Coxeter matroid polytopes
نویسندگان
چکیده
If ∆ is a polytope in real affine space, each edge of ∆ determines a reflection in the perpendicular bisector of the edge. The exchange group W (∆) is the group generated by these reflections, and ∆ is a (Coxeter) matroid polytope if this group is finite. This simple concept of matroid polytope turns out to be an equivalent way to define Coxeter matroids. The GelfandSerganova Theorem and the structure of the exchange group both give us information about the matroid polytope. We then specialise this information to the case of ordinary matroids to learn more about the classical matroid polytope already familiar to matroid theorists. Definitions and notation mostly follow [H] for reflection groups and Coxeter groups, [O, Wel, Wh] for matroids, [BG, BR, BGW1] for Coxeter matroids.
منابع مشابه
Brick Polytopes of Spherical Subword Complexes and Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملBrick Polytopes of Spherical Subword Complexes: a New Approach to Generalized Associahedra
We generalize the brick polytope of V. Pilaud and F. Santos to spherical subword complexes for finite Coxeter groups. This construction provides polytopal realizations for a certain class of subword complexes containing all cluster complexes of finite types. For the latter, the brick polytopes turn out to coincide with the known realizations of generalized associahedra, thus opening new perspec...
متن کاملar X iv : m at h . C O / 0 50 12 46 v 1 1 6 Ja n 20 05 ALCOVED POLYTOPES
The aim of this paper is to initiate the study of alcoved polytopes, which are polytopes arising from affine Coxeter arrangements. This class of convex polytopes includes many classical polytopes, for example, the hyper-simplices. We compare two constructions of triangulations of hypersimplices due to Stanley and Sturmfels and explain them in terms of alcoved polytopes. We study triangulations ...
متن کاملAlcoved Polytopes, I
The aim of this paper is to initiate the study of alcoved polytopes, which are polytopes arising from affine Coxeter arrangements. This class of convex polytopes includes many classical polytopes, for example, the hyper-simplices. We compare two constructions of triangulations of hypersimplices due to Stanley and Sturmfels and explain them in terms of alcoved polytopes. We study triangulations ...
متن کاملMatroids and Coxeter groups
The paper describes a few ways in which the concept of a Coxeter group (in its most ubiquitous manifestation, the symmetric group) emerges in the theory of ordinary matroids: • Gale’s maximality principle which leads to the Bruhat order on the symmetric group; • Jordan–Hölder permutation which measures distance between two maximal chains in a semimodular lattice and which happens to be closely ...
متن کامل